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A direct numerical simulation was carried out of plane turbulent Couette flow at a 
Reynolds number of 750, based on half the velocity difference between the walls and 
half the channel width. Particular attention was paid to choosing a computational 
box that is large enough to accommodate even the largest scales of the turbulence. 
In the central region of the channel very large elongated structures were observed, 
in accordance with earlier findings. The study is focused on the properties of 
these structures, but is also aimed at obtaining accurate turbulence statistics. Terms 
in the energy budget were evaluated and discussed. Also, the limiting values of 
various quantities were determined and their relevance in high Reynolds number 
flows discussed. The large structures were shown to be very sensitive to an imposed 
system rotation. They could be essentially eliminated with a stabilizing system rotation 
(around the spanwise axis) small enough for only minor damping of the rest of the 
scales. Despite the fact that the large structures dominate the appearance of the flow 
field their energy content was shown to be relatively small, on the order of 10% of 
the total turbulent kinetic energy. 

1. Introduction 
Plane Couette flow, i.e. flow between two plane infinitely large parallel planes, is one 

of the canonical flow cases. A fully developed plane Couette flow has a constant shear 
stress across the entire channel. It also has a monotonic velocity profile (see figure l), 
laminar or turbulent. The existence of a non-zero mean shear rate, and associated 
turbulence production at the centre of the channel, gives a significantly different 
character to the flow in this region, as compared to pressure-driven channel flow. 

In comparison with zero-pressure-gradient boundary layers and pressure-driven 
channel flow, plane Couette flow has the unique feature of combining the parallel 
flow property with a zero pressure gradient. This suggests that one would expect 
similarities with boundary layer flow, but with a significantly simpler mean flow 
equation. 

Numerical simulation of fully developed channel flow has successfully been carried 
out in a number of studies (see e.g. Kim, Moin & Moser 1987), but plane Couette 
flow has proven to be more difficult to simulate numerically. Plane Couette flow is 
also difficult to establish experimentally, and experiments are hence scarce although 
recently several reports on plane Couette flow have appeared. 

t Present address: Volvo Aero Corp. 461 81 Trollhattan, Sweden. 
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One approach to obtain Couette flow in experiments is to have one stationary 
and one moving wall. This setup is suitable for hot-wire anemometry since the 
disturbances introduced by the probe will propagate out from the channel. 

Another approach taken is to have an apparatus with counter-moving walls. The 
fully developed state is reached through diffusion of vorticity from the walls across 
the channel. Such an apparatus is suitable for non-intrusive measurements such as 
LDV. Probes inserted in this setup will give rise to disturbances that propagate in 
both directions, since there is no net transport of fluid. 

The earliest reported experiments on plane Couette flow are those of Reichardt 
(1956) in a running belt apparatus with both belts moving. In this study he used 
oil and water as fluids, and reported measurements of mean velocity profiles. He 
also later reported measurements from an air-flow apparatus with one moving wall 
with a fan at the inlet to obtain the correct mass flux through the channel (Reichardt 
1959). He observed the characteristic S-shape of the mean turbulent velocity profile at 
various Reynolds numbers up to 17000, based on half the velocity difference between 
the walls and half the channel width. 

Reichardt also tried to determine the transitional Reynolds number, i.e. the lowest 
Reynolds number for which turbulence is sustained. He arrived at a value of 
750. A number of different results for the transitional Reynolds number were later 
reported, but it is now well established, both from direct numerical simulations 
and experiments, that this value is close to 360 (see Lundbladh & Johansson 1991; 
Tillmark & Alfredsson 1992; Komminaho, Lundbladh & Johansson 1995). 

Robertson & Johnson (1970) made measurements in air in a belt-type apparatus 
with one wall moving (with a fan at the inlet), and reported measurements of 
mean velocity and turbulence data such as two-point correlations and streamwise 
turbulence intensity. More recent experiments are those of El Telbany & Reynolds 
(1982), who used a moving belt and one rigid wall, again together with an inlet blower 
to establish the flow. The Reynolds number ranges covered in these studies are 7000- 
16500 and 950&19000, respectively. It is clear from these measurements that the 
turbulence intensities in the central region are substantially higher than in pressure- 
driven turbulent channel flow. In particular, the streamwise intensity is almost twice 
as high as in channel flow. From these and Reichardt’s experiments it is also clear that 
the normalized mean shear at the centre remains practically constant (or decreases 
very slowly) with increasing Reynolds number. This gives a non-zero turbulence 
production in the central region, which explains the higher turbulence levels there. 

An extensive set of experiments on turbulent and transitional plane Couette flow has 
recently been carried out by Tillmark and co-workers (see e.g. Tillmark & Alfredsson 
1992; Bech et al.1995; Tillmark 1995). The apparatus used in these experiments 
allowed both one- and two-moving-wall setups. Hot-wire anemometry and LDV 
were used to determine various one-point turbulence statistics, as well as two-point 
correlations and turbulence structure. 

For further references on experimental investigations of plane Couette flow and a 
discussion of these, the reader is referred to Tillmark (1995). 

The first direct numerical simulation of fully developed turbulent plane Couette flow 
was carried out by Lee & Kim (1991) who observed very long structures with a roughly 
circular cross-section, extending through the channel. These give a structure of the 
turbulence in the central region that is quite different than in channel flow. They used 
a pseudo-spectral method with 128 x 129 x 192 spectral modes and a computational 
box of 4n x 2 x 8n/3, at a Reynolds number of 3000. They chose the spanwise extent 
of their computational domain so as to contain two pairs of the large structures, 
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FIGURE 1. The flow geometry in plane Couette flow: -, turbulent mean velocity profile; 
. . ., laminar mean velocity profile. 

which may have caused an artificial forcing of these. In their computations they 
found these large structures to extend all the way through the box (in the streamwise 
direction), and to be almost uniform in the streamwise direction. They also report 
that these structures contribute about 30% of the turbulent kinetic energy. When they 
extended the box to more than 1000h the structures persisted, although these results 
are from simulations with very low resolution and are therefore of doubtful value. 

Kristoffersen, Bech & Anderson (1993) used a code based on finite differences, 
second-order central space, with a staggered grid arrangement. The computational 
domain was 471 x 2 x 271, and the number of grid points 96 x 64 x 64, at a Reynolds 
number of 1300. They found fairly high values of the two-point velocity correlations 
for the streamwise velocity for the maximum streamwise separation, which indicates 
that the computational box is too short. They also found large structures to extend 
throughout the box. 

In a later study with the same code (Bech et al. 1995) they used a larger box 
(1071 x 2 x 471) and 256 x 70 x 256 grid points at a Reynolds number of 1300. These 
results were reported together with experimental data. As we shall see from the 
present study also this box is probably too short to accommodate the largest scales. 

A related direct numerical simulation study by Papavassiliou & Hanratty (1996) 
was brought to our attention by one of the referees. Unfortunately this paper was 
still unavailable for comparison at the time of this writing. 

The present study is aimed at investigating the large-scale structures in plane 
Couette flow turbulence, as well as giving accurate turbulent statistics. Investigations 
of the effect of limited box size on the large scales and on the turbulence intensities 
are carried out. We will compare our results with experimental data, and in particular 
with those of Bech et al., (1995, referred to herein as BTAA). Also, the effect of a 
slow system rotation around the spanwise axis is investigated. The effect on the large 
structures and on the turbulence statistics is reported. Since no experiments of this 
flow case exists today, comparison with measured data is not possible. 

2. Numerical requirements 
The simulation code used for the present computations uses spectral methods to 

solve the Navier-Stokes equations, with Fourier representation in the streamwise 
(x) and spanwise ( z )  directions, and Chebyshev polynomials in the wall-normal ( y )  
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Case 

1 
2a 
2b 
3a 
3b 
3c 
4a 
4b 
4c 

Computational Number of Resolution 

32 x 55 x 32 13 x 1.9 x 6.5 
85 x 33 x 42 19 x 3.2 x 15.6 

120 x 55 x 85 13.6 x 1.9 x 7.7 
85 x 33 x 42 54 x 3.2 x 31 

170 x 49 x 85 27 x 2.1 x 15.4 
340 x 55 x 170 13.5 x 1.9 x 7.7 
340 x 55 x 170 13.5 x 1.9 x 7.7 
340 x 55 x 170 13.5 x 1.9 x 7.7 
340 x 55 x 170 13.5 x 1.9 x 7.7 

domain modes 
8 x 2 x 4 

1On x 2 x 4n 
10n x 2 x 471 
28n x 2 x 8n 
28n x 2 x 871 
28n x 2 x 8n 
28n x 2 x 8n 
28n x 2 x 8n 
2871 x 2 x 871 

Time 

4000 
200 
1150 
200 
900 
920 
280 
600 
100 

T,,, Rotation 
rate 
3500 - 

1050 - 

620 - 
150 -0.005 
200 -0.015 

- -0.03 
TABLE 1. Parameters for the various simulation cases. The computational domain is measured 
in half-channel heights, and the resolution is scaled in wall units. The resolution given for the 
wall-normal direction is the mean spacing. T,,, denotes the time over which the statistics were 
averaged. All quantities in the table are in the streamwise, wall-normal and spanwise directions, 
respectively. 

direction. The nonlinear terms are treated pseudo-spectrally using FFTs. The program 
was originally written in Fortran 77 to run on vector machines, but has been ported to 
run on a massively parallel machine, the Thinking Machines CM-200. Aliasing errors 
from the evaluation of the nonlinear term were removed by the $-rule. The time- 
stepping scheme used is semi-implicit, with a third-order Runge-Kutta method for 
the nonlinear term and a second-order Crank-Nicolson method for the linear term. 
The time step was dynamically kept at 90% of the theoretical CFL limit. Periodic 
boundary conditions were used in x- and z-directions, with the no-slip condition at 
the walls. 

The flow situation is sketched in figure 1. If not otherwise stated all quantities are 
normalized by U,,, and h, denoting the wall velocity and half the separation between 
the infinitely large plates that drive the flow. Non-dimensionalization with wall 
variables is used when appropriate and denoted by plus superscript, e.g.y+ = yu,/v 
where u, = ( ~ ~ / p ) ' / ~  is the friction velocity. 

We have carried out simulations with three different sizes of the computational 
domain. For the smallest domain the simulation was directly started with a high 
resolution. For the two larger domains the simulations were started with a coarse 
resolution that was refined when the flow had reached a statistical steady state. The 
final resolution was equal in all three simulations, and comparable to that in the 
turbulent channel flow simulation by Kim et al. (1987, hereinafter referred to as 
KMM). The initial conditions were chosen as a set of random modes without any 
symmetries. To avoid effects of the transients caused by the change of resolution 
the first few hundred time units from the simulations with the final resolution were 
discarded in the evaluation of the flow statistics. For more details concerning the 
simulations see table 1. 

The computations totalled more than 550 CPU hours on a CM-200 with 8k 
processors. The performance of the code for the largest problem size was about 240 
Mflops, and the memory requirements about 900 Mbyte. 

The resolution must be high enough to resolve all relevant scales of the flow. 
For the largest box and the finest resolution the two-dimensional energy spectrum, 
@(kx,  k z ) ,  obtained by integrating the corresponding three-dimensional spectrum in 
the y-direction is shown in figure 2. The general structure of the energy spectrum is 
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FIGURE 2. The logarithm of the two-dimensional energy spectrum @ ( k , ,  k z ) ,  normalized with 
max @ ( k x , k 2 ) ,  as function of streamwise ( k , )  and spanwise ( k Z )  wavenumbers. 

somewhat different from that in channel flow, and the peak at kZ rn 1 S / h  is associated 
with the large structures that we will discuss in detail later. The peak is quite sharp, 
signified by the fact that the energy density is larger than half the peak value in as 
small a range of streamwise wavenumber as 0-0.21/h. To estimate the ‘excess’ energy 
content in the peak the spectrum was compared with one for a case with stabilizing 
spanwise rotation where the large structures are essentially completely eliminated (see 
$4). From this comparison we conclude that the excess energy in the peak in figure 2 
is roughly 10% of the total fluctuation energy. The wavenumbers included for this 
comparison are those with an energy density larger than half the peak value. 

There is no sign of energy build-up at high wavenumbers. Also the energy density 
distribution over the Chebyshev modes obtained by integrating in the x- and z- 
directions, falls a total of seven decades from its maximum value. A similar trend is 
also seen for @ ( k , , k Z )  in figure 2. Altogether this indicates that the resolution used is 
sufficient in all three directions. 

The use of three different sizes of the computational domain enables us to inves- 
tigate the effects of too small a box and to ensure that the results in the largest 
simulation are converged to those of an infinite domain with a good accuracy. If 
the box is smaller than the largest eddies these will artificially become infinitely long 
due to the periodic boundary conditions. They will couple over the box to enhance 
those that are aligned in the streamwise direction, and conversely inhibit the large 
structures that have a non-zero angle with respect to the mean flow direction. From 
inspection of the simulated data, we could observe that the large eddies tend to be 
highly elongated and that the deviation from alignment in the streamwise direction 
typically is small. In the smaller boxes this tendency is quite exaggerated and the 
largest eddies will be artificially amplified (by the periodic boundary condition) caus- 
ing an overprediction of the two-point velocity correlations for large separations. We 
will here examine in some detail the influence of the box length on the two-point 
streamwise velocity correlation with streamwise and spanwise separation. Also the 
influence on the time-averaged velocity r.m.s. values is studied. 
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FIGURE 3. The two-point correlation for the streamwise velocity R,,, at y = 0 for different box sizes: 
28n x 2 x 87c (-), 1On x 2 x 4n (...), and 8 x 2 x 4 (--) (a) for streamwise separation, ( b )  for 
spanwise separation. 

In figure 3 we show two-point velocity correlation curves for the streamwise velocity 
at y = 0, for the three different box sizes. A further effect that tends to give an overpre- 
dicted value of the correlation &,(Ax) at half the box length is the symmetry properties 
of l?,u that cause the derivative to be zero at the maximum separation. This means that 
the two-point correlation for the streamwise velocity Ku(Ax) is always overpredicted 
at half the box length. The situation is therefore somewhat better than what would be 
judged from figure 3(a). It can be concluded though from figure 3(a) that this flow case 
requires a very long box, much longer than is needed for the simulation of turbulent 
channel flow. Closer to the wall the correlation is lower, and the integral length scales 
are smaller. This is in contrast to channel flow where the integral length scales are 
larger closer to the wall. In the 8 x 2 x 4 box the correlation Ku(Az) in figure 3(b) is 
strongly negative at a spanwise separation of half the box width. The box is here only 4 
half-channel heights wide, leaving room for only one pair of the large structures. This 
pair couples strongly over the box, causing the correlation with streamwise separation 
to also become much higher than for an infinite box. For the largest box this effect 
is virtually eliminated since there is room for a number of such pairs. The periodic 
boundary condition is adequate here. One should note that a very wide box is required 
to obtain small correlations. For spanwise separations the correlation is also overpre- 
dicted at half the box width due to the symmetry property of the correlation function. 

The time- and (x,z)-plane-averaged u,,, values (figure 4) for the smallest box 
are considerably higher than for the other two, indicating that this box is totally 
inadequate for obtaining accurate quantitative data for Couette flow. The reason 
for the artificially high energy content in the large scales has been discussed above. 
The urmS values for the largest box have converged to the value for an infinite box. 
The discrepancy with an infinitely large box can be judged to be less than 1% in 
u,,,. Note that it is of great interest to achieve this kind of accuracy in order to be 
able to detect even small Reynolds number dependencies. We may here mention the 
weak Reynolds number trend for (u,,,),~~ observed in channel flow simulations (see 
Antonia & Kim 1994). The maximum of u,,,/u, was found to increase from 2.67 to 
2.74 for roughly a threefold increase in Reynolds number. The differences in the v,,, 
and wrmS values for different box sizes are smaller than for u,,,. 
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FIGURE 4. The u,,,/u, values for the different box sizes as a function of y :  28.n x 2 x 8n (-), 
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FIGURE 5. &,(Ax) at y = 0, averaged over 600 time units (-), different realizations averaged over 
50 time units (. .). 

Another important aspect of the simulations is the requirement for the length of 
the time interval needed for the averaging of the flow statistics. The time scales for 
integral quantities are longer than for instantaneous ones, and we will therefore take 
a closer look at the averaging of &,(Ax) and the integral length scale (Auu,.) at y = 0. 

We can see in figure 5 that the short time averages of &(Ax), averaged over 50 
time units, fluctuate considerably even for rather small separations. Hence, in order 
to determine the correlation curve and integral length scales accurately there is a need 
to take the simulation to very large times. A running time average over Ruu(LbOX/2) 
has converged to 0.05 at the final time, with an error of less than k0.02. As pointed 
out earlier, though, this is an overprediction of the real correlation because of the 
symmetry properties of the correlation curve. 
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FIGURE 6. A,,,(t) at y = 0: -, instantaneous value; . . ., running time average; 

- -, final time averaged value. 

The running time average of the streamwise integral length scale, Auux, is shown in 
figure 6 and it has converged to 6.1 at the final time, wjth an estimated error of less 
than k0.3. The error is estimated by studying the maximum and the minimum of the 
last half of the running-time-average curve, i.e. the last 310 time units of the dotted 
line in figure 6. 

With the above tests we may safely consider the resolution used to be adequate, 
the box size used to be sufficiently large, and the integration time to be sufficient to 
give good statistics, and good integral quantities. In the next section we will examine 
the statistical properties of the flow in the largest box. 

3. Plane turbulent Couette flow 
The flow situation and general character of the mean velocity profile are sketched 

in figure 1 for turbulent plane Couette flow. The Reynolds number based on 
half-channel height and half the velocity difference between the walls is 750 in all 
simulations discussed here. The Reynolds number 

is 52.0. This is approximately a factor two higher than the lowest Reynolds number 
for which turbulence is sustained (Komminaho et al. 1995; Lundbladh & Johansson 
1991 ; Tillmark & Alfredsson 1992). 

In figure 7, the instantaneous streamwise velocity field in an (x,z)-plane at y = 0 
is shown in the form of a grey-scale coding of the velocity. We can clearly see 
the large elongated structures aligned in the streamwise direction in the form of 
alternatingly high- and low-speed streaks. Note that the box is as large as 88 x 25 
in the horizontal plane, or about 42 times larger in area than the box used in the 
channel flow simulation of KMM. 

The large structures give large correlations for large separations mainly for the 
streamwise component, illustrating the fact that they mainly have a streak nature 
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FIGURE 7. Instantaneous velocity fields at T = 2020 in an (x, z)-plane at y = 0. Streamwise velocity 
range -0.5 to 0.5; wall normal velocity range -0.3 to 0.3; spanwise velocity range -0.4 to 0.4. 

with a weak associated streamwise vorticity. The large scales in u compared to the 
other velocity components are obvious from figure 7. 

A cross-sectional view of the large structures is shown for two different times in 
figure 8(a,b). Here the small streamwise scales are filtered out by simply averaging the 
instantaneous fluctuating field over the x-direction. Velocity vectors in the (y,z)-plane 
are shown with superimposed contours of the streamwise fluctuating velocity. One 
can clearly observe distinct vortex patterns that fill the entire gap between the plates 
and are roughly circular in cross-section. 

These vortex patterns have also been observed by Lee & Kim (1991) but whereas 
they found them to be essentially both fixed in position and stationary in time, our 
simulations show that in a sufficiently large box neither of these holds. In figure 8(b) 
we can see several distinct pairs of the vortex structures for z < 0, whereas the 
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pattern is less distinct for z > 0. Also, in figure 8(a), we see a few distinct pairs of 
these structures, but now at z-values between 2 and 10. The streaks are thus neither 
stationary in time nor fixed in position. One further thing may be noted: when the 
integral length scale, A,,,, is high the vortex pattern is more distinct than for times 
when A,,, is low. This suggests that these vortical structures give a major contribution 
to the large macroscale. The streamwise vorticity is quite weak. The maximum ti 
and w velocities in figure 8( b )  are 0.045 whereas the streamwise velocity perturbation 
reaches a level of 0.18. 

To study the evolution of the streak structures a local Gaussian filter was applied 
to the u-fluctuation fields for a number of consecutive times. The filter is given by 

The streamwise filter length 1, was chosen as one integral length (Au,,) and the 
spanwise filter length 1, corresponds to roughly the length at  which the spanwise 
correlation (R,,(Az)) has its first zero-crossing. The filter length was defined on the 
spectral side of the filter as where the filter function is larger than l/e. On the 
physical side the filter lengths become l,/n and lz/n.  The first picture in figure 9 
shows the entire midplane ( y  = 0) filtered u-field which clearly illustrates the organized 
structure of the large-scale velocity field. The following pictures show the evolution 
of a small part of the domain. Note that the mean propagation velocity of the 
structures is zero at the centreline. One can observe an instability-like break-up of 
the structures resulting in small-scale turbulence that in the filtered fields shows up 
as diffuse regions. A subsequent regeneration of the streaks can also be observed. 
This process is quite similar to the break-up regeneration cycle observed by Hamilton, 
Kim & Waleffe (1995) in a simulation of geometrically highly constrained Couette 
flow turbulence. 

The two-point correlation for the different velocity components at y = 0 is shown 
in figure 10(a,b) as function of streamwise and spanwise separation, respectively. 
Results from the experiments of BTAA are included for comparison and show good 
agreement with the present data. The larger scales seen in the u-field in figure 7 are 
also reflected in the character of the correlation curves in figure 10. The streamwise 
integral scale A,,, is here 6.1 (see figure 6) ,  which is almost eight times larger than in 
channel flow (see KMM). 

The streamwise velocity correlation has a minimum at a spanwise separation of 
Az w 2 (see figure lob),  which is consistent with the fact that the large structures 
essentially fill the entire gap between the plates and are close to circular in cross 
section (see figure 8a.b). Since they fill the whole channel in the wall-normal direction 
they do not contribute to the spanwise velocity at the centreline. This can be seen in 
the w-field in figure 7 which shows no sign of the large structures. 

If the large structures had a preferred non-zero angle (with equal probability 
of plus and minus sign) with respect to the x-axis this would show up in a two- 
dimensional correlation surface &,(Ax, Az). However, figure 11 clearly shows that 
the largest correlation occurs for Az = 0, indicating that the large structures are 
preferably aligned with the streamwise direction. This is also in agreement with 
the experimentally determined space-time correlation results recently obtained by 
Tillmark (1 995). 

In the u-field in figure 12 which is a grey-scale picture of the streamwise velocity in 
an (x,z)-plane at y = 0.9, or in wall coordinates y+ w 5,  we can observe the typical 



270 J .  Komminaho, A .  Lundbladh and A .  K Johansson 

(a) 

10 

z o  

ie> 

~ 1 0  

-40 ~ 2 0  0 
X 

20 40 

FIGURE 9. The filtered streamwise velocity for a series of consecutive times, at the midplane (y = 0). 
The velocity range is -0.3 to 0.3: (a)  the whole (x,z)-plane, and (b-g) the lower left corner of the 
field (as marked in a), for different times. (a,b) T = 1397.5, (c) T = 1402.2, ( d )  T = 1407.5, (e) 
T = 1413.4, (f) T = 1418.7, (g) T = 1424.0, (h) T = 1429.1, and (i) T = 1434.9 

wall streaks which here are more narrow than the elongated structures in the outer 
region. The wall normal velocity has a spatially very intermittent character, and 
associated high flatness at this position, which is roughly at the edge of the viscous 
sub-layer. The fluctuations in v are, of course, strongly damped by the wall at this 
position. We can observe signs of the wall streaks to some extent also in the spanwise 
velocity. 

The correlations near the wall (figure 13) are here lower than at the centre of the 
channel. This is in contrast to channel flow, in which the lowest correlations occur at 
the centre. The positions of curves for v and w are opposite to those at y = 0. The 
minimum of the correlation for the streamwise velocity here occurs at a spanwise 
separation of Az w 1.3, corresponding to Az+ fi: 68. This is some what larger than 
the corresponding value in channel flow. The wall streak spacing in channel flow 
(and other flows) is about 100 wall units, which should give a correlation minimum 
at Az+ fi: 50. The lack of scale separation associated with the low Reynolds number 
shows an influence of the large-scale outer structures even at this near-wall position. 
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FIGURE 10. The two-point correlation, Ru,,,, for the streamwise (-), wall-normal (--) and 
spanwise (. .) velocity a t  y = 0: (a )  for streamwise separation, ( b )  for spanwise separation. Symbols 
( 0 )  are from measurements by BTAA. 
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FIGURE 11. The two-point velocity correlation for the streamwise velocity as a function of streamwise 
and spanwise separation, R,,(Ax, Az), at the midplane ( y  = 0). The positive contours denote R,, 2 0, 
and the dashed contours denote R,, < 0. The contour increment is 0.05. 

This causes the minimum to appear for a larger value than 50. In channel flow 
(see KMM) the u and w have correlation minima at the same spanwise separation 
Az+ x 50. Here the w velocity, which is less influenced by the largest outer structures, 
has a correlation minimum at Az+ is 50. It was also found that the correlations, 
as shown in figure 13, are essentially independent of wall distance in the viscous 
sub-layer. 

3.1. Statistical averages 
The statistical values presented here have, if not otherwise stated, been time averaged 
over 620 time units, and also averaged in space in the two homogeneous directions 
(x and 2 ) .  The mean velocity profile non-dimensionalized by the friction velocity u, is 
shown in figure 14(a). Note the characteristic S-shape of the profile and the non-zero 
mean shear at the centreline, leading to non-zero turbulence production there. The 
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FIGURE 12. Instantaneous velocity fields at T = 2020 in an (x,z)-plane at y = 0.9. Streamwise 
velocity range 0.2 to 1.0; wall-normal velocity range -0.06 to 0.06; spanwise velocity range -0.3 
to 0.3. 

mean shear at the centreline dU/dylcL is 0.18, or in wall units dU+/dy+ = 0.05. This 
means that the mean shear at the centreline is 1/20 of the mean shear at the wall. 
Tillmark (1995) compiled all existing experimental data for the shear at the centreline, 
which showed a practically constant, possibly very slowly decreasing value close to 
0.2 for Reynolds numbers ranging from 750 to 19000. 

The mean velocity in inner scales is presented in figure 14(b) in the classical semi-log 
plot. Note that the grid points closest to the wall are located at y+ = 0.09. The dotted 
line in figure 14(b) represents the log-law with an additive constant of 4.6. Data from 
the experiments (Re = 1300) of BTAA are included for comparison. We note that the 
extent of the log-layer is very small due to the low Reynolds number. The y+-value 
at the centreline is here only 52.0, which can be compared with the channel flow 
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FIGURE 13. The two-point correlation, R , , ,  for the streamwise (-), wall-normal (--) and 
spanwise (. .) velocity at y+ = 5 :  (a )  for streamwise separation, ( b )  for spanwise separation. 
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FIGURE 14. The mean velocity profile ( a )  in outer, and (b)  in inner variables; o are from the 

experiments by BTAA. Dashed curve: I/+ = yf .  Dotted line: U +  = (1/0.4)lny+ + 4.6. 

simulation of KMM where y &  = 180. Despite the low y+-value at the centreline in 
the present case the Reynolds number is about twice the transitional one. 

Turbulence intensities for the three velocity components are shown in figure 15, 
where several things can be noted (y is the distance from the centre of the channel 
whereas y f  is measured from one of the walls). The max u,,,/u, is 2.76 which 
compares well with other wall-bounded shear flows. The streamwise turbulence 
intensity at the centreline is as high as 2.06, mainly due to the non-zero turbulence 
production there. The low Reynolds number may also be of some influence, since 
the y+-value at the centreline is lower so that the intensity should be compared with 
the corresponding value at the same y+-value for a higher Reynolds number. This 
also means that the turbulence is considerably more anisotropic in the central part 
than, for example, in channel flow. The Reynolds number variation of u,,,~/u, at 
the centreline appears to be quite weak and most experimental data fall close to 2.0. 
There is a close agreement with the experimental data of BTAA in the near-wall 
region. 

There is considerable discrepancy in turbulence intensity near the centreline, which 
possibly could be ascribed to Reynolds number effects. A closer scrutiny of various 
investigations does not really support this hypothesis. Instead the results including 
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FIGURE 15. Root-mean-square velocity fluctuations normalized with the friction velocity: 
u,,,/u, (-), vrmS/u, (- -), w,,,/u, (. . .); o are experimental data from BTAA. 

+ Reynolds number Author urms I C L  
1260 BTAA 1.60 
1375 Tillmark (1995) 1.95 
2300 Tillmark (1995) 1.95 
2675 Tillmark (1995) 2.05 
9500 El Telbany & Reynolds (1982) 1.74 
1352 Aydin & Leutheusser (1991) 2.02 
2381 Aydin & Leutheusser (1991) 1.96 

TABLE 2. at the centreline as obtained in various investigations. 

other experiments by Tillmark (1995) seem to indicate a value close to 2.0 irrespective 
of Reynolds number (see table 2). The wrms-profile is almost constant in the central 
region. The same behaviour is observed by BTAA, Kristofferson et al. (1993) and Lee 
& Kim (1991), whereas in channel flow w,,, has a distinct minimum at the centre of 
the channel. The wall normal velocity in our simulation is monotonically increasing 
towards a maximum at the centreline. At higher Reynolds number a flatter curve 
would be expected in the central region. 

The statistical errors in the turbulence intensity profiles are estimated in the same 
way as for the integral length scale. The estimated error obtained in this way is less 
than 1% of the maximum value. 

The distribution of the Reynolds stress in plane Couette flow in figure 16 is seen to 
be symmetric in contrast to, for example, channel flow. For plane Couette flow one 
may readily integrate the streamwise momentum equation to obtain 

Hence, the sum of the viscous and turbulent stress is constant throughout the channel. 
This also means that the deviation of -iB/u: from unity at the centreline is equal 
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FIGURE 16. Distribution of the normalized Reynolds shear stress. 

to the previously mentioned value of 0.05 for dU+/dy+jcL. Here, the maximum 
Reynolds stress will occur at the centreline independent of Reynolds number. Hence, 
the general character of the curve in figure 16 is not a low Reynolds number effect. 

If we expand the instantaneous velocities in power series about the wall values we 
see that the leading term in the Reynolds stress, -a, is of third order in y+ close to 
the wall: 

Our simulation shows that a = 1.2 x lop3. This is almost twice the value of 0.7 x 
reported by Mansour, Kim & Moin (1988) for their investigation of channel flow. It 
is also higher than in the simulation of flow in a square duct by Gavrilakis (1992) 
where a value of about 0.8 x lop3 was found. 

The limiting value of the relative streamwise turbulence intensity, u,,,/ U ,  or equiv- 
alently ( ~ f ) , . , ~  has been the subject of much debate in the literature. Alfredsson et al. 
(1988) compiled and analysed previously reported experimental results and carried 
out a set of measurements in several different flow facilities. They concluded that 
earlier measurements with flush-mounted hot films in wind tunnels suffered from 
frequency-dependent heat loss to the hot-film-substrate, thus resulting in differences 
between the static and dynamic response characteristics. This effect results in a far 
too low value for hot films in air if a static calibration is used. Alfredsson et al. (1988) 
concluded from measurements in oil and water, and from measurements in air with a 
‘hot-wire on the wall’, that the correct value of (w?)~ , ,  should be close to 0.40. KMM 
obtained a value of 0.36 in their channel flow simulation, whereas a simulation at a 
higher Reynolds number yielded 0.40 (see Antonia & Kim 1994). 

Gavrilakis (1992) simulated a square duct flow and reported a value of 0.36 at the 
duct wall bisector for (a$),,.,. Here 

It is noteworthy (see figure 17) that the intensities of the vorticity fluctuations 
in the central part are considerably higher here than in channel flow (by roughly 
three times). 

approaches 0.41 at the wall. 
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FIGURE 17. Root-mean-square vorticity fluctuations normalized by the mean shear: wx,,v/uf (-), 
~,,,,v/u: (- -1, wz, , ,v /4  (. ‘ .I. 

The general character of the vorticity intensity curves is quite similar to that in 
channel flow (see KMM). Even the minimum in occurs at the same y+-position 
(approximately 5). KMM interpreted this as being related to the wall-normal extent 
of the wall streaks. 

The skewness and flatness factors are shown in figure 18(a,b) and compared with 
results (for u )  from the BTAA experiments. The Gaussian flatness value of 3 is 
included for comparison in figure 18(b). The almost perfect antisymmetry of the 
skewness curves shows that the statistical sample is adequate. Note that the zero 
crossing of S, occurs where u,,, is a maximum and F, is a minimum. This feature 
has also been found in a number of other flows. 

The very high values of the flatness factor close to the wall, in particular for v ,  show 
the highly intermittent character of the flow in this region. This behaviour seems to 
be universal for all wall-bounded shear flows. 

The turbulent kinetic energy budget can be written as (with K = ;a) 

where, for parallel flow with variation in the y-direction only, the production 8, 
dissipation E and the diffusion D are defined in non-dimensional form (scaled by 
U;>lh) as 

For parallel flows each side of (3.4) is zero if we average over large enough times. We 
have explicitly calculated the production and the dissipation terms, and determined 
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from BTAA. 

the diffusion from the balance equation (3.4). To verify that this procedure yields a 
correct value of D ,  DK/Dt was determined and found to be less than 3 x in the 
statistical sample used here. The diffusion term acts only as a spatial redistribution 
term, so the integral 

1' D dy 

should be zero. In the present statistical sample it is quite close to zero (-0.002). The 
value of the integral may be compared with that of the production, which was found 
to be 0.11. Altogether, this indicates that the above procedure is justified. 

The distributions of 9, E, and D between the two plates are shown in figure 19 and 
compared with the corresponding distribution from the channel flow simulation at 
Re, = h' = 180 (Mansour et ul. 1988). The general character of the curves is similar 
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FIGURE 19. The turbulent kinetic energy budget: 9' production (-), E dissipation (--), and D 
diffusion (. ..). Symbols are from Mansour et al. (1988) plotted as function of y + :  - . - , is the 
theoretically estimated production in a channel with a near-wall mean velocity approximated by 
U+ = (l/c)tanhcy+. 

Channel 
Quantity Couette h+ = 180 h+ = 400 
urfms/y+ 0.41 0.36 0.40 
urfmS/y+* 1.3 x lop2 0.85 x lop2 1.1 x lop2 
wr+ms/y+ 0.26 0.19 0.25 

€+ 0.23 0.16 0.22 
w:/y+ 3.2 x lo-* 2.1 x lop2 2.9 x lo-* 

TABLE 3. Limiting values for y+ -+ 0 (note that a,' = u,f,,/y+ and w,' = w,+,,/y+ here). 
Channel flow data from simulations (see Antonia & Kim 1994). 

-E+/~+' 1.2 x 10-~  0.7 x 10-3 1.0 x lop3 

for the two cases. The distributions for the diffusion term are practically identical for 
the two cases. 

Kim & Gibson (1989) hypothesized that there exists a large region of counter- 
gradient diffusion of turbulent energy from the centre of the channel towards the 
walls, caused by excess energy production at the centre of the channel. In fact, as our 
data show, there is no excess energy at the centre, instead the dissipation is larger 
than the production and the diffusion is towards the centre from y+ = 14 and up, 
and towards the wall for smaller y+-values. This can be seen more clearly if we model 
the diffusion by 

integrate both sides and divide by dk/dy. If a is less than zero we have counter 
gradient diffusion. Our data show no significant region with negative values of a and, 
hence, no counter-gradient diffusion. 
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For fully developed parallel shear flows in the channel flow geometry we can 
integrate the streamwise momentum equation once. For plane Couette flow we obtain 
(3.2). In the corresponding equation for fully developed channel flow a term -y+/h+ 
should be added to the right-hand side. By multiplying (3.2) by dU+/dy+, we obtain 
the following relation for the turbulence production in plane Couette flow: 

This means, for instance, that the turbulence production on the centreline is 0.05 x0.95. 
This is verified in figure 19 where the terms in the energy budget are shown. From 
(3.5) it also directly follows that the maximum of 9+ is 0.25 occurring at a position 
where dUf/dy+ = 0.5. This rather remarkable result for turbulent Couette flow is 
exact and holds irrespective of the value of the Reynolds number. This result is 
well reproduced in the present simulation results, and true also for channel flow and 
practically all wall-bounded shear flows to a high degree of accuracy for reasonably 
high Reynolds numbers. 

For turbulent channel flow the expression (3.5) for the turbulence production would 
be modified by adding the term -y+/h+ within the parentheses. In the region where 
the production is large this additional term is quite small. The maximum of P+ 
approaches 0.25 for infinite Reynolds number, and we may estimate the deviation 
from this value by approximating the mean velocity profile with some analytical 
expression. It has been shown that the mean velocity profile from the wall up through 
the buffer region may be reasonably well approximated by 

1 Ut = - tanhcy' 

with c = 1/13.6. This gives a maximum of Y+ that occurs close to yf = 12. For 
the channel flow simulation described in Antonia & Kim (1994) the above expression 
gives P:ax-values of 0.217 for h+ = 180 and 0.235 for h+ = 400, which agree well 
with the data of Antonia & Kim (see also figure 19). 

The above also means that the present Couette flow results in the near-wall region 
could be expected to resemble the high-Re (h+ = 400) channel flow results more 
closely than the low-Re (hf = 180) case. This is evident from limiting values (as 
y' + 0) of the various quantities given in table 3. For instance, we note that 
the previously discussed limiting value of ul',,/y+ in the present simulation shows 
considerably closer agreement with the h+ = 400 channel flow case, and is quite 
close to the value found from experimental studies in Alfredsson et al. (1988). An 
interesting aspect is that the limiting values for the present Couette flow simulation, 
hence, may be of interest for modelling purposes, where we may see these as values 
valid for high Reynolds number channel and boundary layer flows. The conclusion 
that the present near-wall results at Re = 750 should be valid also for higher Reynolds 
numbers is further substantiated by recent experimental results of Tillmark (1995). 
He measured uhs/y+ at Re = 1260 and 2300 and also found a limiting value in the 
viscous sub-layer of 0.41 for both these Reynolds numbers. 

C 

4. Effects of a weak system rotation 
Simulations with various degrees of system rotation were carried out to study the 

sensitivity of the large-scale structures. The axis of rotation is chosen to be aligned 
with the spanwise direction and the sign is chosen to stabilize the flow. In contrast 
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FIGURE 20. Instantaneous velocity fields in an (x, z)-plane at y = 0, 52 = -0.005, streamwise 
velocity range -0.5 to 0.5. 

to channel flow with stationary walls, both sides of the channel are here stabilized 
or destabilized if the sign of rotation is switched. The latter case has recently been 
studied by Bech (1995). Their results show enhanced turbulent fluctuations and 
distinct streamwise roll cells, for a destabilizing rotation. 

The instability mechanism may qualitatively be understood by using a displaced- 
particle argument (see also Alfredsson & Persson 1989). The Coriolis acceleration of 
a fluid particle in a rotating system is defined as & = 2 a  x u, where a is the system 
rotation defined in figure 1, and u is the mean velocity. This acceleration will be 
directed normal to both the velocity vector and the rotation vector. In the present 
case the system rotation axis is aligned with the spanwise ( 2 )  axis, and the mean 
velocity is in the streamwise (x) direction. Hence, the body force associated with the 
Coriolis acceleration, which in non-dimensional form is written as -2H x V, will be 
aligned with the wall normal, and the sign will depend on the sign of the rotation. For 
a positive sign of the rotation the Coriolis force will increase monotonically from the 
lower ( y  = -1) to the upper wall ( y  = +l). Consequently there will be a monotonic 
decrease for Q < 0. We may here make the analogy with density-stratified situations. 
A monotonic decrease of the body force, corresponding to a decreasing density in 
the y-direction, gives a stable situation. Hence, here we should expect a stabilizing 
influence throughout the flow for Q < 0 and a destabilizing effect of a positive rotation. 

In turbulent channel flow, one side of the channel will be stabilized and the other 
destabilized since dU/dy is antisymmetric with respect to the centreline. 

The dramatic effect on especially the large structures is evident in figure 20, where 
the applied system rotation is as weak as -0.005. Compared with the non-rotating 
field shown in figure 7 we clearly see that the extremely regular large-scale pattern 
there has disintegrated in figure 20. In the BTAA experiments where the half-channel 
width was 1 cm and the wall velocity was 0.13 m s-l, the chosen non-dimensional 
rotation rate would correspond to one revolution in 100 s !  The mean vorticity at the 
centreline (for Q = 0) is -0.18. The system rotation chosen here corresponds to an 
addition of -0.01 to this vorticity. This minor disturbance has a large dynamic effect 
and we see in figure 21 that the effect on the mean vorticity in the near-wall regions 
is about 50 times larger than the added vorticity, and almost one order of magnitude 
larger at the centreline. The effect is to reduce the difference in mean vorticity, i.e. to 
approach the laminar state, where CL), = -1 throughout the channel. This tendency 
is further enhanced for the higher rotation rate (Q  = -0.015) in figure 21. A further 
doubling of the rotation rate leads to relaminarization of the flow. 
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FIGURE 22. h+ as a function of the rotation rate 52:  - -, laminar value. 

The decrease in turbulent activity can be illustrated by the global measure t- 

which is also the friction-velocity Reynolds number of the flow. Figure 22 shows the 
monotonic decrease in h+ as the rotation rate is successively increased. At f2 = -0.030 
the h+ value is that of the laminar flow at this Reynolds number. Even at L2 = -0.015 
laminar regions start to appear in the flow. 

In the computations the rotation rate was increased in steps to avoid large tran- 
sients. For each rotation rate the simulation was carried out for long enough times 
for the transients to die out in the approach to steady state. 

One may note that the change in h+ at 0 = -0.005 is quite small despite the 
dramatic change in the u-field appearance. This reflects the fact that only a small 
portion of the energy is contained in the very large structures. The excess energy 
associated with the elongated structures was estimated from spectra (see the discussion 
in connection with figure 2) to be roughly 10% of the total fluctuation energy. 
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FIGURE 23. The integral length scale Auux(t) at y = 0 for a rotation rate SZ of -0.005. 

The rotation was applied at T = 2020. 

The dramatic change in the flow field is illustrated in terms of velocity vectors 
and u-fluctuation velocity contours in the cross-stream ( y ,  z)-plane in figure 8(c). In 
comparison with the non-rotating cases (figures 8a,b) the magnitude of the streamwise 
velocity fluctuations has decreased by roughly a factor of two and the break-up of 
the organized vortex structures is evident. 

The break-up of large scales may be illustrated by the variation of AuUx with time. 
Figure 23 shows that we get a rapid decrease in the integral scale when the rotation 
is applied. At steady state Auux approaches a value of about 2.0, i.e. only a third of 
that in the non-rotating case. 

The correlation curves at the centreline for steady state with Q = -0.005 are 
compared with the corresponding non-rotating result in figure 24. The dramatic 
effect on the large scales mentioned above is clearly seen and the correlation drops 
to become insignificant at a streamwise separation of about 15 half-channel heights. 
Also the mean spacing between the structures decreases, from about 4h to about 2.6h. 

The corresponding correlation curves closer to the wall, y+ = 5, are shown in 
figure 25. Here also the effect of the slow system rotation on the large structures 
is large, the correlation drops to zero at a streamwise separation of about 15h, and 
the integral length scale A,,, drops from 5.6 to 3.0. Here the minimum for spanwise 
separation occurs for Az+ = 50, which corresponds to a mean spacing of the near-wall 
streaks of 100. Note that for the case with slow system rotation the integral length 
scale is higher close to the wall than in the centre of the channel, whereas in the case 
with no system rotation the reverse is true. 

5. Concluding remarks 
Direct numerical simulations of turbulent Couette flow were carried out at a 

Reynolds number of 750, based on half the velocity difference between the plates 
and the half-channel height. The simulations reveal the existence of very large-scale 
elongated structures qualitatively in accordance with earlier observations. Particular 
attention is, in this study, paid to the characteristics of these structures. To ensure 
reliable quantitative results the existence of these structures forces the computational 
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FIGURE 24. The two-point correlation for the streamwise veIocity and different rotation rates 
at y = 0 and Q = 0 (-), SZ = -0.005 (--): (a) for streamwise separation, ( b )  for spanwise 
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FIGURE 25.  The two-point correlation for the streamwise velocity and different rotation rates at 
y+ = 5, SZ = 0 (-), SZ = -0.005 (- -): (a) for streamwise separation, ( b )  for spanwise separation. 

domain to be very large. The simulations reported here were carried out in a box 
approximately 42 times larger in area than that used for the channel flow simulations 
of KMM. 

To confirm the convergence of the simulation results, simulations with several 
different box sizes were carried out. Comparisons with simulations in the smaller 
boxes suggests that the turbulent statistics for the largest box had converged to within 
1% of the values valid for an infinitely large box. 

In the channel flow simulation of KMM the streamwise integral scale, A,,,, on the 
centreline was found to be about 0.8. The present simulation shows that this scale is 
nearly eight times larger in plane Couette flow (at Re = 750). It is interesting to note 
that Gavrilakis (1992) showed with a numerical simulation that the integral scales 
in a square duct flow are significantly larger than in channel flow. Near a corner 
he found A,,,-values of about 1.6. This can be ascribed to the elongated structures 
formed by the secondary flow in that case. 
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A closer scrutiny of the large elongated structures in plane Couette flow is motivated 
by the fact that these form the major qualitative difference between this flow and 
canonical cases such as channel flow and zero-pressure-gradient boundary layer flow. 
The dynamics of the large structures and their role for the observed large integral 
scale was therefore further investigated by simulations of plane Couette flow with an 
imposed stabilizing system rotation (with the rotation axis in the spanwise direction). 
The effect on the large structures was shown to be dramatic even at very low rates 
of rotation. For an imposed rotation with a Rossby number of 200, which normally 
should signify negligible effects of rotation, the large elongated structures in the central 
region nearly vanished, resulting in a drop of the integral scale Auux from about 6h 
to 2h. The turbulence Reynolds number Re,, on the other hand, was observed to 
decrease by only a few percent, in accordance with the finding that the excess energy 
in the large structures is roughly only 10% of the total kinetic energy. This finding also 
indicates that the generation mechanism of the large structures is a very sensitive one. 

The process of break-upregeneration of the large streak structures was further 
studied by use of a spatially localized filter to remove the small scales. An instability- 
like break-up of the large structures could be observed similar to that found by 
Hamilton et al. (1995) in geometrically highly constrained Couette flow turbulence, 
similar in character to the evolution of near-wall structures observed by Johansson, 
Alfredsson & Kim (1991) in channel flow DNS data. The duration of the break-up 
regeneration cycle was found to be of the order of 40-50 time units. 

Extensive efforts were devoted to ensuring that accurate turbulence statistics could 
be obtained from the simulation. Good agreement was found with the experiments 
of Bech et al. (1995). The kinetic energy budget was studied in some detail. It was 
shown that the maximum of the turbulence production term Y+ attains a value of 
0.25, regardless of Reynolds number. This is also the value found in zero-pressure- 
gradient boundary layer flow and the asymptotic value for pressure-driven channel 
flow at infinite Reynolds numbers. This suggests a similarity between plane Couette 
flow and boundary layer flow as well as high-Re channel flow. 

A comparison with previous channel flow simulations at two different Reynolds 
numbers (Antonia & Kim 1994) indeed showed that Couette flow data for limiting 
values of various quantities near the wall exhibit the closest similarity with the higher 
Reynolds number channel flow. Together with the fact that recent experimental 
findings also indicate that the limiting near-wall values are independent of Reynolds 
number in plane Couette flow, this means that the limiting values near the wall in 
the present Couette flow simulation may be close to those of high Reynolds number 
flow in channels and boundary layers, and may therefore be of interest for turbulence 
modelling purposes. An example might be the limiting value of the relative intensity 
of the streamwise wall-shear stress fluctuations, where experiments (Alfredsson et al. 
1988) indicate a universal value in channel and boundary layer flows of about 0.40. 
The present value agrees well with the high-Re channel flow value of Antonia & 
Kim which also reconciles the discrepancy between the earlier low-Re channel flow 
simulation and the experimental findings. 
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